Solve the inequality: x^2 - x < 12

Firstly, the equation should be rearranged to get all the non-zero terms onto one side, with the simplest way of doing this being subtracting 12 from both sides, giving the equation x2 - x - 12 < 0. Then the next step would be to factorise the equation to find the roots of the equation, which in other words will be where the quadratic intercepts the x-axis or the line y=0. Doing this gives (x+3)(x-4) < 0, meaning the roots are the equation are x = -3 or x = 4.Now as the roots have been found, we need to find where the graph x2 - x - 12 is lower than 0 as the equality requires. The best way of doing this to be able to understand it is by drawing a graph, but if we think about what the graph will look like, we realise that as the graph is a quadratic, it will be a curved parabola with an intercept of -12 when x = 0 (test this by subbing 0 into the equation). Then we can assume that as the graph is below the line y = 0 when x = 0, and the graph crosses the line y = 0 when x = -3 and x = 4, the graph must be negative for between these values. Therefore the inequality is solved with -3 < x < 4.

TH
Answered by Thomas H. Maths tutor

6047 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A curve has equation y = x^3 - 48x. The point A on the curve has x coordinate -4. Is A a stationary point?


A straight line runs through these two coordinates (1,5) and (4,7), find the equation of the line.


How many centimeters are there in 6.8 meters?


How do you use the product rule?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences