Prove that the square of an odd integer is odd.

Let n be an odd integer. This means that n is 1 more than an even integer. By definition, even integers are multiples of 2 so all even integers can be written in the form 2m where m is an integer. Therefore, n = 1 + 2m.n2 = (1+2m)2 = 1 + 4m + 4m2 = 1 + 2(2m + 2m2)Again, by definition, 2(2m + 2m2) is even. Therefore, n2 is 1 more than an even integer meaning that n2 is also odd.Thus, we have proven what was required.

MO
Answered by Mary O. Maths tutor

3666 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate, with respect to x, xCos3x


show that tan(x)/sec2(x) = (1/2)sin(2x)


Solve the simultaneous equations y+4x+1 = 0 and y^2+5x^2+2x = 0


Find the intergal of 2x^5 -1/(4x^3) -5 giving each term in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning