How do we differentiate y = arctan(x)?

Step 1: Rearrange y = arctan(x) as tan(y) = x.

Step 2: Use implicit differentiation to differentiate this with respect to x, which gives us:

(dy/dx)*(sec(y))^2 = 1.

Step 3: Rearrange this equation to give us:

dy/dx = 1/(sec(y))^2.

Step 4: Use a trigonometric identity to substitute and find that:

dy/dx = 1/(1+((tan(y))^2).

Step 5: Recall that x = tan(y) and substitute this to find: 

dy/dx = 1/(1+x^2).

Done.

SC
Answered by Solly C. Maths tutor

80799 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the binomial series to find the expansion of 1/(2+5x)^3 in ascending powers of x up to x^3 (|x|<2/5)


Find the binomial expansion of (4-8x)^(-3/2) in ascending powers of x, up to and including the term in x^3. Give each coefficient as a fraction in its simplest form. For what range of x is a binomial expansion valid?


(The question is too long so it's marked at the top of the answer space, sorry for any inconveniences)


Derive the quadratic formula (Hint: complete the square)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning