p and q are two numbers each greater than zero. √(p^2 + 5q) = 8 and √(p^2 – 3q) = 6. Find the values of p and q.

First of all, we have to raise to the power of two the first equation and will obtain: p^2 + 5q = 64. 
We have to proceed the same for the second equation and will obtain: p^2 - 3q = 36. 
Second step is to substract the equations we just got and will have: p^2 + 5q - p^2 +3q =  28, hence 8q = 28, so q = 28/8 = 7/2. We go back to the first or the second equation and plug in q and we obtain p^2 = 64-35/2, so p^2 = 93/2, so q = sqrt(93/2). So, p = sqrt(93/2) and q = 7/2. The solution is verified by the two equations and is available as both numbers are positive, as required.  

AB
Answered by Andrada-Ioana B. Maths tutor

7364 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Work out 2 1/7 + 1 1/4.


Sean drives from Manchester to Gretna Green. He drives at an average speed of 50 mph for the first three hours. He then breaks and drives the final 150 miles at 30 mph. Sean thinks his average speed is 40 mph ,is he correct?


What is the point of bearings?


Find the value of x in the equation 3x + 5 = 11


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences