p and q are two numbers each greater than zero. √(p^2 + 5q) = 8 and √(p^2 – 3q) = 6. Find the values of p and q.

First of all, we have to raise to the power of two the first equation and will obtain: p^2 + 5q = 64. 
We have to proceed the same for the second equation and will obtain: p^2 - 3q = 36. 
Second step is to substract the equations we just got and will have: p^2 + 5q - p^2 +3q =  28, hence 8q = 28, so q = 28/8 = 7/2. We go back to the first or the second equation and plug in q and we obtain p^2 = 64-35/2, so p^2 = 93/2, so q = sqrt(93/2). So, p = sqrt(93/2) and q = 7/2. The solution is verified by the two equations and is available as both numbers are positive, as required.  

AB
Answered by Andrada-Ioana B. Maths tutor

7557 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

3 teas and 2 coffees have a total cost of £7.80 5 teas and 4 coffees have a total cost of £14.20 Work out the cost of one tea and the cost of one coffee.


If f(x)=8x-3, what is the inverse function?


Samuel had 3 piles of coins, I, II and III. Altogether there was 72p. Pile II had twice as much as pile I. Pile III had three times as much as pile II. How much money was in Pile III?


How do I expand and simplify a double bracket equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences