If a circle passes through points (2,0) and (10,0) and it has tangent line along the y-axis, then what are the possible equations of the circle?

Firstly it will help to draw a diagram of our two points along the x-axis, from this we can find out the x co-ordinate of the center of the circle as these points form a chord of the circle. Where in this case the x co-ordinate is the midpoint of two given points. So we have: (10+2)/2 = 6 which is our x co-ordinate for the center, if this is still unclear it may help to refer to the diagram. The y co-ordinate is still unknown for now. Next we know that as the y axis is a tangent line we have that the radius of the circle is 6 ( this may help to refer to the diagram drawn). Finally we need to find the y co-ordinate of our center, for this we can use our known equations for circles. We have: (x-6)2 + (y-a)2 =62 , as we know in order to obtain an unknown value we can substitute in a point we know the circle goes through, so at (2,0), x=2 and y=0, so 42 +a2 =36, re-arranging this gives a= sqrt(20) or a= -sqrt(20), so we have our two possible equations for the circle: (x-6)2+(y+sqrt(20))2=36 and (x-6)2 +(y-sqrt(20))2 =36

KM
Answered by Kieran M. Maths tutor

3897 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate with respect to x : y = x^2 -5x


Three forces, (15i + j) N, (5qi – pj) N and (–3pi – qj) N, where p and q are constants, act on a particle. Given that the particle is in equilibrium, find the value of p and the value of q. (Mechanics 1 June 2017)


What is differentiation?


I'm supposed to calculate the differential of f(x)= sin(x)*ln(x)*(x-4)^2 using the product rule. I know what the product rule is but I can't split this into two bits that are easy to differentiate. How do I do it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning