Solve the quadratic 2x^2+7x+6 by completing the square

All quadratic equations take the general form:

ax2+bx+c=0

The first step used to comlete the square is to divide the whole equation by the a term, in our case 2:

1)        x2+(7/2)x+3=0

We then move our c term to the right hand side of the equation by subtracting from both sides:

2)        x2+(7/2)x=_3

Let us, for a moment, just examine the left hand side of this equation. We can see that:

3)        (x+7/4)2=x2+(7/2)x+(7/4)2

Therefore:

4)         x2+(7/2)x=(x+7/4)2-(7/4)2

Inserting equation 4 into equation 2 gives:

5)        (x+7/4)2-(7/4)2=_3

We can re-arrange to get:

6)        (x+7/4)2=_3+(7/4)2

Simplifying the right hand side gives:

7)        (x+7/4)2=1/16

Taking the square root of both sides gives(baring in mind that taking the square root of a number gives us a positive and a negative number):

8)        x+7/4=+1/4

Finally subtracting 7/4 leaves us with our answer:

9)        x=3/2 or x=2

HN
Answered by Henry N. Maths tutor

15748 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are n sweets in a bag. 6 of them are orange, the rest are yellow. Hannah takes a random sweet, she eats the sweet and repeats again. The probability that hannah eats two orange sweets is 1/3. Show that n2 - n - 90 = 0.


solve this simulatneous equations (with clear algebraic working) : 5x-2y = 33 , 5x + 8y = 18


How would you find the mean for the numbers 100, 230, 450, 120 and 250?


How do you know when to use sin, cos and tan?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences