John invests £8000 at compound interest rate of 1.5% per year. He wants to earn more than £2000 in interest. What is the LEAST time in WHOLE years that this will take?

Step 1) Create the formula: 8000 x 1.015nStep 2) Equate to the target value: 8000 x 1.015n = 2000 10000 (Common mistake is to use target of £2000 but you must also take into account the £8000 that is already in the account as this is what will determine the amount of interest John gets per year)Step 3) Re-arrange to get value with 'n' by itself: 1.015n = 5/4Step 4) Use logs to find an exact value for n: Log1.015(1.015n) = Log1.015(5/4) => (Logs in first part of equation cancel) n = 14.988LEAST amount of WHOLE years = 15 (Always round up as if we rounded down the interest earned would be <£2000)

HH
Answered by Hamza H. Maths tutor

3022 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

√ (6²+8²) = ∛(125a³) Find a.


Solve the two equations: Equation 1: 2a - 5b = 11 Equation 2: 3a + 2b = 7


The length of a rectangle is x+5 and the width is x+3. Write an equation for the area of the rectangle.


How can I work out the area of a semi-circle with a diameter of 12cm?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences