Find the minimum value of the function, f(x)= x^2 + 5x + 2, where x belongs to the set of Real numbers

We first differentiate f(x), and we get f'(x)=2x + 5. We then set this equal to 0 and then solve for x. We get that xmin= -2.5. We check whether this was indeed a minimum, by calculating the second derivative, f''(xmin)= 2. Since f''(x) > 0 we know that xmin is indeed a (local) minimum. Then to find the minimum value of f(x), we substitute the value of x back to the equation and get the minimum value of f(x) is -4.25 ((-2.5)^2 + 5(-2.5) + 2 = -4.25))

PP
Answered by Pavlos P. Maths tutor

3588 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

how do you differentiate tan(x)


Simplify (3x^2-x-2)/(x^2-1)


(GCSE) A rectangle has the following characteristics: its length is (2x + 5), its width is (3x - 2). The perimeter of the rectangle is 46 cm. What is the value of x?


What is the chain rule and how is it used?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning