Find the minimum value of the function, f(x)= x^2 + 5x + 2, where x belongs to the set of Real numbers

We first differentiate f(x), and we get f'(x)=2x + 5. We then set this equal to 0 and then solve for x. We get that xmin= -2.5. We check whether this was indeed a minimum, by calculating the second derivative, f''(xmin)= 2. Since f''(x) > 0 we know that xmin is indeed a (local) minimum. Then to find the minimum value of f(x), we substitute the value of x back to the equation and get the minimum value of f(x) is -4.25 ((-2.5)^2 + 5(-2.5) + 2 = -4.25))

PP
Answered by Pavlos P. Maths tutor

3163 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation y = 1/2x^3 - 9x^3/2 + 8/x + 30, find dy/dx. Show that point P(4, -8) lies on C


Find f(x^(1/2)+4)dx (Where f is the integral sign)


Find the coordinates of the sationary points on the curve x^2 -xy+y^2=12


The second and fifth terms of a geometric series are 750 and -6 respectively. Find: (1) the common ratio; (2) the first term of the series; (3) the sum to infinity of the series


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences