Given y = x(3x+ 5)^3. Find dy/dx.

First we notice that y can be written as the product of two functions of x, u = x and v = (3x + 5)^3. This means we can use the product rule to differentiate which is dy/dx = uv' + vu'. We can plug our functions u and v into this formula, using the chain rule to differentiate v to arrive at dy/dx = (3x + 5)^3 + 9x(3x + 5)^2. Next we need to simplify by taking out a common factor to get (3x + 5)^2 ((3x +5) + 9x)). Which we can further simplify to (3x + 5)^2 (12x + 5) which is the final answer.

MS
Answered by Michael S. Maths tutor

3987 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider a cone of vertical height H (in metres) and base radius R (in metres) which is full with water. The cone, at time t=0, starts to leak such that it loses water at a rate of k m^3 per second. Give an expression for the rate of change of H.


Show that the integral of tan(x) is ln|sec(x)| + C where C is a constant.


Whats the Product rule for differentiation and how does it work?


How do you integrate the function cos^2(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences