g(x) = ( x / (x+3) ) + ( 3(2x+1) / (x^2 + x - 6) ). Show that this can be simplified to: g(x) = (x+1) / (x-2).

Step 1: The denominator of the right-hand fraction is quadratic, so we can factorise this to (x+3)(x-2). This looks similar to the denominator of the left-hand fraction, suggesting we can combine the two. Step 2: To make both denominators equal, multiply the left-hand fraction by (x-2)/(x-2). This is the same as multiplying by 1, so does not change anything. Step 3: The two fractions can now be combined into a single fraction: [ x(x-2) + 3(2x+1) ] / [ (x+3) (x-2) ]. By expanding the top line further, we obtain [ x^2 + 4x + 3 ] / [ (x+3) (x-2) ]. Step 4: The numerator of this fraction is quadratic, so just as in step 1, we can factorise this to [ (x+3) (x+1) ] / [ (x+3) (x-2) ]. Step 5: The (x+3) terms on the top and bottom both cancel out, leaving g(x) = (x+1) / (x-2).

AS
Answered by Amar S. Maths tutor

5317 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A sweet is modelled as a sphere of radius 10mm and is sucked. After five minutes, the radius has decreased to 7mm. The rate of decrease of the radius is inversely proportional to the square of the radius. How long does it take for the sweet to dissolve?


What is the value of the integral of e^x from x = 1 to x = 2?


Find (dy/dx) of x^3 - x + y^3 = 6 + 2y^2 in terms of x and y


Prove that sqrt(2) is irrational


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences