Find the tangent of the following curve, y=xe^x, at x=1 expressing it in the form y=mx+c?

Firstly, we calculate the y-value when x=1, namely y=e. Then we need to find the gradient of this curve at x=1, which can be determined by taking the derivative of y and then valuate it at x=1. So dy/dx=xe^x+e^x=(x+1)e^x, at x=1 dy/dx=2e. Using the equation of a line given by y-y_0=m(x-x_0), where m is the gradient of the line (namely m=2e) and (x_0,y_0) is the coordinate that is given to us (namely x_0=1 and y_0=e), we obtain that y-e=2e(x-1), hence y=2ex-e is the tangent of this curve at x=1.

BS
Answered by Bruno S. Maths tutor

17586 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that n is a prime number greater than 5 then n^4 has final digit 1


Factorise x^3+3x^2-x-3


Find D when 8x^3-12x^2-2x+D is divided by 2x+1 when the remainder is -2


Finding the tangent of an equation using implicit differentiation


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning