Find the tangent of the following curve, y=xe^x, at x=1 expressing it in the form y=mx+c?

Firstly, we calculate the y-value when x=1, namely y=e. Then we need to find the gradient of this curve at x=1, which can be determined by taking the derivative of y and then valuate it at x=1. So dy/dx=xe^x+e^x=(x+1)e^x, at x=1 dy/dx=2e. Using the equation of a line given by y-y_0=m(x-x_0), where m is the gradient of the line (namely m=2e) and (x_0,y_0) is the coordinate that is given to us (namely x_0=1 and y_0=e), we obtain that y-e=2e(x-1), hence y=2ex-e is the tangent of this curve at x=1.

BS
Answered by Bruno S. Maths tutor

18177 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given x = 3sin(y/2), find dy/dx in terms of x, simplifying your answer.


I know how to integrate, but I still never see any real world example of it, so it is difficult to understand. Why is it useful?


Integrate the following function by parts and reduce it to it's simplest form. f(x) = ln(x).


Solve the following simultaneous equations: 3x + 5y = -4 and -2x + 3y = 9


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning