Find the indefinite integral ∫(x^2)*(e^x) dx (Edexcel C4 June 2013 Question 1)

This is an example question where you integrate by parts twice. When answering a question like this it is helpful to memorise general integration formula, so you can quickly and confidently tackle questions like this. For this question ∫(x^2)(e^x) dx = ∫udv =uv- ∫vdu where [u=x^2] and [dv= (e^x)dx]; differentiate both sides of the equation [u=x^2] to get [du=2x dx] and integrate both sides of the the equation [dv= (e^x)dx] to get [v=e^x]. Substituting these terms into the general formula, you get (x^2)(e^x)- ∫ (e^x)(2x)dx. Now, integrate ∫ ((e^x)(2x) dx by parts using the same process. The overall expression now simplifies to (x^2)(e^x)-[2x *(e^x)- 2 ∫ (e^x) dx]. This then can be solved to get (x^2)(e^x)-2[x(e^x)-e^x]+c. (Do not forget to add the constant).

DC
Answered by Daniel C. Maths tutor

5239 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are the stationary points of the curve (1/3)x^3 - 2x^2 + 3x + 2 and what is the nature of each stationary point.


Find the gradient at the point (0, ln 2) on the curve with equation e^2y = 5 − e^−x . [4]


Use integration by parts to find the integral of x sin(3x)


The finite region S is bounded by the y-axis, the x-axis, the line with equation x = ln4 and the curve with equation y = ex + 2e–x , (x is greater than/equal to 0). The region S is rotated through 2pi radians about the x-axis. Use integration to find the


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning