Find the indefinite integral ∫(x^2)*(e^x) dx (Edexcel C4 June 2013 Question 1)

This is an example question where you integrate by parts twice. When answering a question like this it is helpful to memorise general integration formula, so you can quickly and confidently tackle questions like this. For this question ∫(x^2)(e^x) dx = ∫udv =uv- ∫vdu where [u=x^2] and [dv= (e^x)dx]; differentiate both sides of the equation [u=x^2] to get [du=2x dx] and integrate both sides of the the equation [dv= (e^x)dx] to get [v=e^x]. Substituting these terms into the general formula, you get (x^2)(e^x)- ∫ (e^x)(2x)dx. Now, integrate ∫ ((e^x)(2x) dx by parts using the same process. The overall expression now simplifies to (x^2)(e^x)-[2x *(e^x)- 2 ∫ (e^x) dx]. This then can be solved to get (x^2)(e^x)-2[x(e^x)-e^x]+c. (Do not forget to add the constant).

DC
Answered by Daniel C. Maths tutor

5384 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate a function comprised of two functions multiplied together?


How do you factorise quadratic, cubic functions or even quartic functions?


How do you integrate ln(x)?


What's the difference between the quotient rule and the product rule?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning