Differentiate the function f(x) = x*sin(x)

This function is the product of the two functions 'x' and 'sin(x)'. Therefore we use the product rule, which says that the differential of a product of two functions is the differential of the first multiplied by the second, plus the differential of the second multiplied by the first:

d/dx(x*sin(x)) = (d/dx(x))sin(x) + x(d/dx(sin(x)))

                     = 1sin(x) + xcos(x)

                     = sin(x) + x*cos(x)

DB
Answered by Dylan B. Maths tutor

5817 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How could I sketch a graph of y=2x^3-3x^2?


Let p(x) = 30 x^3 -7 x^2 - 7 x + 2. Prove that (2x + 1) is a factor of p(x) and factorise p(x) completely.


The equation kx^2 + 4x + (5 – k) = 0, where k is a constant, has 2 different real solutions for x. Show that k satisfies k^2-5k+4>0.


Find the radius and centre of the circle given x^2+4x+y^2+2y=20


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning