Prove the identity: sin^2(x)+cos^2(x) = 1

This is one of the most commonly used A level identities which can be proved using only GCSE maths!

Firstly, take an arbitrary right angle triangle with Hypotenuse h, and angle x between h and the adjacent side. (Diagram recommended)

Label the triangle in terms of h and x using simple SOHCAHTOA:

Hypotenuse = h

Adjacent = hcos(x)

Opposite = hsin(x)

Now, using everyone’s favourite theorem (Pythagorean):

h^2 = h^2cos^2(x)+h^2sin^2(x)

Factoring out h^2 on the right hand side:

h^2 = h^2(cos^2(x)+sin^2(x))

Dividing both sides by h^2 to make it explicit:

1 = cos^2(x)+sin^2(x)

SO
Answered by Sean O. Maths tutor

4674 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the general solution, in degrees, of the equation 2 sin(3x+45°)= 1


A curve has the equation y = x^4 - 8x^2 + 60x + 7. What is the gradient of the curve when x = 6?


When dealing with trigonometric functions such as sin, cos or tan, how do you solve the trigonometric equation when the argument of the function(s) is nx, where n is a real number not equal to 1.


The polynomial f(x) is define by f(x) = 3x^3 + 2x^2 - 8x + 4. Evaluate f(2).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning