The Curve C shows parametric equations x = 4tant and y = 5((3)^1/2)(sin2t) , Point P is located at (4(3)^1/2, 15/2) Find dy/dx at P.

First I would find the value of t at Point P - I would equate the x equation to 4(3)^1/2 and the y equation to 15/2. This would give me (Px,Py). After this I would then find dy/dt, and dx/dx by differentiating the two equations with respect to t. We can then find dy/dx by multiplying dy/dt by dt/dx ( we obtain dt/dx by finding the reciprocal of dx/dt ). With this we have an equation for dy/dx , now all we have to is substitue the value of t we found in the beginning to obtain dy/dx.

AB
Answered by Arjun B. Maths tutor

3990 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given a table showing grouped data and the frequency of each class, find the median Q2


Use the substitution u=4x-1 to find the exact value of 1/4<int<1/2 ((5-2x)(4x-1)^1/3)dx


Find the turning points of the curve y=2x^3 - 3x^2 - 14.


Integrate e^(2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences