Express 6cos(2x)+sin(x) in terms of sin(x). Hence solve the equation 6cos(2x) + sin(x) = 0, for 0° <= x <= 360°.

Firstly, we need to express 6cos(2x) + sin(x) in terms of sin(x) 6cos(2x) + sin(x) = 6cos(x+x) + sin(x) = 6cos2(x) - 6sin2(x) + sin(x) (applying cos(x+y) = cos(x)cos(y) - sin(x)sin(y)) = 6(1 - sin2(x)) - 6sin2(x) + sin(x) (applying cos2(x) + sin2(x) = 1) = 6 + sin(x) - 12sin2(x)Now to solve 6cos(2x)+sin(x) = 0This is the same as: 6 + sin(x) - 12sin2(x) = 0 12sin2(x) - sin(x) - 6 = 0 (4sin(x) - 3)(3sin(x) + 2) = 0 (Factorising)Therefore sin(x) = 3/4 and sin(x) = -2/3Now, considering the range given is 0° <= x <= 360° : From sin(x) = 3/4, we get x = sin-1(3/4) = 48.6° And applying the identity sin(x) = sin(180-x) we get an additional solution: 180 - 48.6 = 131.4° The next solution would be 360 + 48.6 = 408.6° but this is outside the range and so we can discard it.From sin(x) = -2/3, we get x = sin-1(-2/3) = -41.8° This is outside the range, so this will not be our solution, however using the identities for sin we can find solutions within the range. sin(x) = sin(180-x), therefore: -41.8 = 180 - -41.8 = 180 + 41.8 = 221.8° Also, sin(x) = sin(360+x), therefore: -41.8 = 360 - 41.8 = 318.2°And these solutions are our answers: 48.6°, 131.4°, 221.8°, 318.2°

DA
Answered by Dilan A. Maths tutor

4012 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A block of mass M lies stationary on a rough plane inclined at an angle x to the horizontal. Find a general expression relating the coeffecient of friction between the block and the plane and the angle x. At what angle does the box begin to slide?


How do you find the angle between two vectors?


Find the x and y coordinates of the turning points of the curve 'y = x^3 - 3x^2 +4'. Identify each turning point as either a maximum or a minimum.


Express the fraction (p+q)/(p-q) in the form m+n√2, where p=3-2√2 and q=2-√2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning