Express 6cos(2x)+sin(x) in terms of sin(x). Hence solve the equation 6cos(2x) + sin(x) = 0, for 0° <= x <= 360°.

Firstly, we need to express 6cos(2x) + sin(x) in terms of sin(x) 6cos(2x) + sin(x) = 6cos(x+x) + sin(x) = 6cos2(x) - 6sin2(x) + sin(x) (applying cos(x+y) = cos(x)cos(y) - sin(x)sin(y)) = 6(1 - sin2(x)) - 6sin2(x) + sin(x) (applying cos2(x) + sin2(x) = 1) = 6 + sin(x) - 12sin2(x)Now to solve 6cos(2x)+sin(x) = 0This is the same as: 6 + sin(x) - 12sin2(x) = 0 12sin2(x) - sin(x) - 6 = 0 (4sin(x) - 3)(3sin(x) + 2) = 0 (Factorising)Therefore sin(x) = 3/4 and sin(x) = -2/3Now, considering the range given is 0° <= x <= 360° : From sin(x) = 3/4, we get x = sin-1(3/4) = 48.6° And applying the identity sin(x) = sin(180-x) we get an additional solution: 180 - 48.6 = 131.4° The next solution would be 360 + 48.6 = 408.6° but this is outside the range and so we can discard it.From sin(x) = -2/3, we get x = sin-1(-2/3) = -41.8° This is outside the range, so this will not be our solution, however using the identities for sin we can find solutions within the range. sin(x) = sin(180-x), therefore: -41.8 = 180 - -41.8 = 180 + 41.8 = 221.8° Also, sin(x) = sin(360+x), therefore: -41.8 = 360 - 41.8 = 318.2°And these solutions are our answers: 48.6°, 131.4°, 221.8°, 318.2°

DA
Answered by Dilan A. Maths tutor

3984 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has the following equation: x^3 + 3y - 4(x^3)*(y^3) a) Show that (1,1) lies on C b) Find dy/dx


How do you differentiate X to the power of a?


What are the advantages of using numerical integration (Trapezium rule, Simpson's rule and so on) over direct integration?


Find the equation of the tangent to the curve y = (5x+4)/(3x -8) at the point (2, -7)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences