Given y = 2x(x2 – 1)5, show that (a) dy/dx = g(x)(x2 – 1)4 where g(x) is a function to be determined. (b) Hence find the set of values of x for which dy/dx > 0

Given = 2x(x2 – 1)5, show that
(a) dy/dx = g(x)(x2 – 1)4 where g(x) is a function to be determined.

dy/dx= (2)(x2 – 1)5 + (2x)*5(x2– 1)4(2x)

dy/dx= (x2 – 1)4( 2(x2 – 1) + 20x2 )

g(x) = 2(x2 – 1) + 20x2

(b) Hence find the set of values of x for which dy/dx > 0
(x2 – 1)4( 2(x2 – 1) + 20x2 ) = 0

2(x2 – 1) + 20x2 = 0

22x2 - 2 = 0
2(11x2 - 1) = 0

11x2 = 1

x = +-√(1/11)

AI
Answered by Abi I. Maths tutor

9723 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 2x/cos(x)


How does finding the gradient of a line and the area under a graph relate to real world problems?


How do you integrate ln(x) with respect to x?


Edexcel C3 June 2015 Q1: tan(x)=p, where p is a constant. Using standard trigonometric identities, find the following in terms of p. a) tan(2x). b) cos(x). c) cot(x-45).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences