If a 5 metre ladder is resting against a wall and the bottom of the ladder is 3 metres away from the wall, and someone pulls the bottom of the ladder away at a speed of 1 metre per second, calculate the speed of the top of the ladder after t seconds

After t seconds the distance between the bottom of the ladder and the wall is t metres. Let x denote the distance that the top of the ladder has moved after t seconds. Now use the theorem of Pythagoras to obtain a quadratic equation in x and t. Then use implicit differentiation to obtain a formula for dx/dt in terms of x and t, and solve the quadratic to express this in terms of t alone.

OB
Answered by Oliver B. Maths tutor

3100 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 4 sin(x) – 8 cos(x) in the form R sin(x-a), where R and a are constants, R >0 and 0< a< π/2


Find dy/dx for y=5x^3−2x^2+7x−15


Solve the inequality x^2 > 3(x + 6)


Differentiate the function f(x) = (x^2 - 1)^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning