How do I differentiate f(x) = cos(x)/x?

To answer this question you need to use the quotient rule. dy/dx = (vu' - uv')/v2.

U = cos(x) which differentiates to -sin(x) so u'= -sin(x)

v = x so v' = 1

Therefore, dy/dx = ( -xsin(x) - cos(x) ) / x2

EH
Answered by Ewan H. Maths tutor

11407 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve, correct to 2 decimal places, the equation cot(2x)=3 for 0°<x<180°


A ball is thrown from ground level at an angle of 30 degrees from the horizontal with a velocity of 20 m/s. It just clears a wall with a height of 5m, from this calculate the distances that the wall could be from the starting position.


Solve dy/dx= (x√(x^2+3))/e^2y given that y=0 when x=1, giving your answer in the form y = f(x)


A curve has equation y = 6ln(x) + x^2 -8x + 3. Find the exact values of the stationary points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning