Solve this quadractic equation: x^2 - 8x + 15 = 0

To solve x2 - 8x + 15 = 0 we could try to use the Product, Sum, Numbers method (PSN).

The PSN method tells us that our numbers must multply to make the product of the first and last term, in this case 15.  It also tells us that they must sum to the middle term, which is -8.

By thinking through all the factors of 15 (including negatives), we can work out which pair works:

15= 1 x 15, 3 x 5, -1 x -15 and -3 x -5

Of all these pairs, only the final pair add together to make -8, therefore these must be our two values of x.

We can then subsitute them in to say that:

x- 3x  + (-5x +15) = 0

Then we take the biggest factor out of both the first half and the second half:

x(x-3) -5(x-3) = 0

Which shows us that x2 - 8x + 15 = (x-3) (x-5)

So it can only be equal to zero when x = 3 or when x = 5

TS
Answered by Toby S. Maths tutor

11222 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

solve the simultaneous equation 2y + x = 8 and 1 + y = 2x


I'm good at maths, I swear


In a right-angled triangle calculate the length of the hypotenuse when the side lengths at 5cm and 7cm. Leave your answer as a surd.


Solve 10(x + 2) – (2x – 9) = 30


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning