Sketch the curve y=x^2-x-6

This curve is a quadratic due to the highest power in the equation being two. Quadratics typically have the shape of a U. Due to the coefficient of the x^2 term being positive, the curve is increasing for larger values of x. To find where the curve crosses the x-axis we equate the equation to zero and factorise. This results in (x-3)(x+2)=0 so the curve crosses the x-axis at either 3 or -2. This is because for the equation to be true, either x-3=0 or x+2=0. The graph crosses the y-axis when x=0, therefore at -6. The minimum of the graph can be found by completing the square. Hence y=(x-1/2)^2-25/4 and so the minimum occurs at (1/2,-25/4).

MA
Answered by Masum A. Maths tutor

6721 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve: x^2-7x+6=0


The curve C has equation y=(2x-3)^5, the point P lies on C and has coordinates (w, – 32), find (a) the value of w and (b) the equation of the tangent to C at the point P in the form y=mx+c , where m and c are constants.


f(x)=(2x+1)/(x-1) with domain x>3. (a)Find the inverse of f(x). (b)Find the range of f(x). (c) g(x)=x+5 for all x. Find the value of x such that fg(x)=3.


Solve the equation |3x + 4| = |3x - 11|


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning