Sketch the curve y=x^2-x-6

This curve is a quadratic due to the highest power in the equation being two. Quadratics typically have the shape of a U. Due to the coefficient of the x^2 term being positive, the curve is increasing for larger values of x. To find where the curve crosses the x-axis we equate the equation to zero and factorise. This results in (x-3)(x+2)=0 so the curve crosses the x-axis at either 3 or -2. This is because for the equation to be true, either x-3=0 or x+2=0. The graph crosses the y-axis when x=0, therefore at -6. The minimum of the graph can be found by completing the square. Hence y=(x-1/2)^2-25/4 and so the minimum occurs at (1/2,-25/4).

MA
Answered by Masum A. Maths tutor

6612 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The Curve C shows parametric equations x = 4tant and y = 5((3)^1/2)(sin2t) , Point P is located at (4(3)^1/2, 15/2) Find dy/dx at P.


dh/dt = (6-h)/20. When t=0, h=1. Show that t=20ln(5/(6-h))


Given that 3^(-3/2) = a* 3^(1/2), find the exact value of a.


Find, using calculus, the x coordinate of the turning point of the curve y=e^(3x)*cos(4x) pi/4<x<pi/2 (Edexcel C3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning