Find the coordinate of the stationary point on the curve y = 2x^2 + 4x - 5.

The important point in the question is the term 'stationary point'. This is where the graph of y will 'flattern out'. If we look at this graph, we can say that the gradient is equal to 0 at this point. Therefore, dy/dx = 0. dy/dx = 4x +4 = 0. Therefore, x = -1. Plug this value back into y to get y = 2(-1)^2 + 4(-1) - 5 = -7. So the coordinate of the stationary point will be at (-1,-7).

SM
Answered by Serkan M. Maths tutor

5059 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I remember trig identities?


Prove the identity (sin2x)/(1+(tanx)^2) = 2sinx(cosx)^3


A curve has equation x = (y+5)ln(2y-7); (i) Find dx/dy in terms of y; (ii) Find the gradient of the curve where it crosses the y-axis.


How do I find the maxima and minima of a function?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning