show that y = (kx^2-1)/(kx^2+1) has exactly one stationary point when k is non-zero.

Stationary points are found by considering the points at which the gradient of the function equal zero. For the above, you need to employ the quotient rule, since both numerator and denominator are f(x), to find dy/dx (=y'). If y = u/v, then y' = (u'v - v'u) /v^2. and so y' = 4kx/(kx^2+1)^2. Stationary points are when y' = 0. The numerator is the only important term here, and 4kx = 0 only when x = 0 for all non-zero constants of k - i.e. one stationary point.

RM
Answered by Rob M. Maths tutor

5192 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = 2x^3 + 6x^2 + 4x + 3 with respect to x.


Find the gradient of the tangent to the curve y=4x^2 - 7x at x = 2


Find the gradient, length and midpoint of the line between (0,0) and (8,8).


Use integration to find I = ∫ xsin3x dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning