Where does the geometric series formula come from?

Rearranging the terms of the series into the usual "descending order" for polynomials, we get a series expansion of:  

axn-1 +........ax + a

A basic property of polynomials is that if you divide xn – 1 by x – 1, you'll get:

xn–1 + xn–2 + ... + x3 + x2 + x + 1

That is: 

a(xn–1 + xn–2 + ... + x3 + x2 + x + 1) = a(xn-1)/(x-1)

The above derivation can be extended to give the formula for infinite series, but requires tools from calculus. For now, just note that, for | r | < 1, a basic property of exponential functions is that rn must get closer and closer to zero as n gets larger. Very quickly, rn is as close to nothing as makes no difference, and, "at infinity", is ignored. This is, roughly-speaking, why the rn is missing in the infinite-sum formula.

NA
Answered by Naheem A. Maths tutor

4593 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 3/2x+3 – 1/2x-3 + 6/4x^2-9 as a single fraction in its simplest form.


How do I differentiate something of the form a^x?


Find an equation of the circle with centre C(5, -3) that passes through the point A(-2, 1) in the form (x-a)^2 + (y-b)^2 = k


A straight line passes through the point (2,1) and has a gradient of 3. Find the co-ordinates of the points where this line intersects the axes


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning