Differentiate (2^x)(5x^2+5x)^2.

This is a relatively difficult equation to differentiate as there are various parts to consider.Firstly, we will let u=2^x and v=(5x^2+5x)^2 in the product rule. Then the differential of u is (2^x)ln(2). We must remember how to differentiate exponential here where the exponent is a variable.Then the differential of v is 2(10x+5)(5x^2+5x) by using the chain rule. If we substitute the correct values into the product rule equation we get an answer of
2(2^x)(10x+5)(5x^2+5x)+(2^x)ln(2)(5x^2+5x)^2.
No need to simplify this.

GH
Answered by George H. Maths tutor

3658 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the solution to ln(3)+ln(x)=ln(6)


Differentiate 8x^4 + 2x^2 + 10


Using the result: ∫(2xsin(x)cos(x))dx = -1⁄2[xcos(2x)-1⁄2sin(2x)] calculate ∫sin²(x) dx using integration by parts


How do I tell if a curve has a maximum or a minimum?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning