Differentiate the function; f(x)=1/((5-2x^3)^2)

We know from the properties of basic indices that a-x=1/ax, so 1/((5-2x3)2=(5-2x3)-2 where in this case, a=5-2x3and x=2. Then the function is differentiable by the chain rule. As dy/dx=dy/duXdu/dx, we let u=5-2x3, and by the principles of differentiation, du/dx=-6x2. If f(x)=y=(5-2x3)-2, we have that y=u-2, hence dy/du=-2u-3. therefore by the chain rule, dy/dx=dy/duXdu/dx=-2u-3X-6x2=12x2u-3=12x2(5-2x3)-3=12x2/(5-2x3)3.
So when f(x)=1/(5-2x3)2, f'(x)=12x2/(5-2x3)3.

BK
Answered by Benjamin K. Maths tutor

5061 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=x^(-1/2)-x


How do you differentiate using the chain rule?


The curve A (y = x3 – x2 + x -1) is perpendicular to the straight-line B at the point P (5, 2). If A and B intersect at P, what is the equation of B? Also, find any stationary points of the curve A.


How do polar coordinate systems work?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences