Find the equation of the normal of the curve xy-x^2+xlog(y)=4 at the point (2,1) in the form ax+by+c=0

differentiating: xy'+y-2x+(x/y)y'+log(y)=0rearranging: y'=y(2x-y-log(y))/x(1+y)at (2,1): y'=3/4 so gradient of normal at (2,1) is -4/3so the equation of the normal is y-1=(-4/3)(x-2)which is equivalent to 4x+3y-11=0

SL
Answered by Sam L. Maths tutor

2915 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation 3^(5x-2)=4^(6-x), and show that the solution can be written in the form log10(a)/log10(b).


Q4 on 2017 Edexcel C4 paper, concerns differentiation of multiple variables.


Find the equation of the tangent to the curve y = 3x^2(x+2)^6 at the point (-1,3), in the form y = mx+c


If f(x) = (3x-2) / x-5 x>6, find a.) ff(8) b.) the range of f(x) c.) f^-1(x) and state its range.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences