Differentiate (3x^2-5x)/(4x^3+2x^2)

We can differentiate the expression using the quotient rule. If f(x)=u(x)/v(x) then f'(x)=(u'(x)v(x)-u(x)v'(x))/v(x)^2. In this case u(x)=3x^2-5x so u'(x)=6x-5 and v(x)=4x^3+2x^2 so v'(x)= 12x^2+4x. Using the quotient rule the full derivative is: (6x-5)(4x^3+2x^2)-(3x^2-5x)(12x^2+4x)/(4x^3+2x^2)^2

AI
Answered by Andras Ivan A. Maths tutor

4694 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx, given that y=(3x+1)/(2x+1)


Find the integral of (cosx)*(sinx)^2 with respect to x


Differentiate x^2 + y^2 with respect to x


A curve has equation y=x^2 + (3k - 4)x + 13 and a line has equation y = 2x + k, where k is constant. Show that the x-coordinate of any point of intersection of the line and curve satisfies the equation: x^2 + 3(k - 2)x + 13 - k = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning