Find the stationary points and their nature of the curve y = 3x^3 - 7x + 2x^-1

To start, we need to know that the gradient of the curve at the stationary points is 0 and that when the second derivative is less than 0, there is a maximum and when the derivative is greater than 0, there is a minimum. In order to find the gradient of the curve, we differentiate y. This gives dy/dx = 9x2 - 7 - 2x-2.We know that at the stationary points, dy/dx = 0. Hence, 9x2 - 7 - 2x-2 = 0 and x = 1, -1. To find the nature of these points, we need to differentiate one more time and substitute the values of x into the second derivative. d2y/dx2= 18x + 4x-3.For x = 1, d2y/dx2= 22. Therefore at x = 1, there is a minimum.For x = -1, d2y/dx2= -22. Therefore at x = -1, there is a maximum.

AA
Answered by Arjun A. Maths tutor

4363 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate, by parts, y=xln(x),


Prove that sin(x)+sin(y)=2sin((x+y)/2)cos((x-y)/2)


f(x)=(2x+1)/(x-1) with domain x>3. (a)Find the inverse of f(x). (b)Find the range of f(x). (c) g(x)=x+5 for all x. Find the value of x such that fg(x)=3.


Find the 1st derivative of y = x^2 + 7x +3 and hence find the curves minima.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning