Integrate (x+3)/(x(x-3)) with respect to x

The easiest way to solve this is to split the fraction into partials.Using partial fractions, we get A/(x-3)+B/x=x+3/(x(x-3)) implies Ax+B(x-3)=x+3We want to find the values of A and B that solve this, so we want to eliminate A and solve for B, then eliminate B and solve for A.Setting x=0 eliminates A, so B(-3)=3 implies that B=-1Setting x=3 eliminates B, so 3A = 6 implies A=2Thus we have 2/(x-3)-1/xWe can integrate this fine now.The integral of 2/(x-3) is going to be 2ln|x-3|, as the numerator 2 times the derivative of the denominator. Likewise, -1/x integrates to -ln|x|. So the integral is 2ln|x-3|-ln|x|+c

RS
Answered by Robin S. Maths tutor

3348 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I draw and sketch an equation?


On the same diagram, sketch the graphs of: y = |5x -2| and y = |2x| and hence solve the equation |5x - 2| = |2x|


A circle, C, has an equation: x^2 + y^2 - 4x + 10y = 7 . Find the centre of the circle and its radius?


A curve is defined by the parametric equations: X = 3 – 4t , y = 1 + (2/t) Find (dy/dx) in terms of t.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning