Integrate (x+3)/(x(x-3)) with respect to x

The easiest way to solve this is to split the fraction into partials.Using partial fractions, we get A/(x-3)+B/x=x+3/(x(x-3)) implies Ax+B(x-3)=x+3We want to find the values of A and B that solve this, so we want to eliminate A and solve for B, then eliminate B and solve for A.Setting x=0 eliminates A, so B(-3)=3 implies that B=-1Setting x=3 eliminates B, so 3A = 6 implies A=2Thus we have 2/(x-3)-1/xWe can integrate this fine now.The integral of 2/(x-3) is going to be 2ln|x-3|, as the numerator 2 times the derivative of the denominator. Likewise, -1/x integrates to -ln|x|. So the integral is 2ln|x-3|-ln|x|+c

RS
Answered by Robin S. Maths tutor

3374 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (x^2+4x+13)/((x+2)^2)(x-1) dx by using partial fractions


Show that, for all a, b and c, a^log_b (c) = c^log_b (a).


ln(2x^2 + 9x – 5) = 1 + ln(x^2 + 2x – 15). Express x in terms of e


Prove that the derivative of tan(x) is sec^2(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning