Integrate the following function by parts and reduce it to it's simplest form. f(x) = ln(x).

First note that ln(x) = 1ln(x), this is in the form udv/dx.

Let dv/dx = 1 and u = ln(x). 

du/dx = 1/x from the standard results and v = x by integration.

Substituting into the formula

integral(udv/dx)dx = uv - integral(vdu/dx)dx we get

Integral(ln(x))dx = x*ln(x) - integral( x/x )dx

                        = x*ln(x) - integral(1)dx

                        = x*ln(x) - x + C

                        = x(ln(x) - 1) + C.

This is written in it's simplest form. Do not worry if you forget about the constant in your C4 exam. Most edexcel mark schemes would still give you full marks for this.                                   

RB
Answered by Ryan B. Maths tutor

4330 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 3x^(2)+xy+y^(2)=12 with respect to x


How do I differentiate?


differentiate with respect to 'x' : ln(x^2 + 3x + 5)


A small stone is projected vertically upwards from a point O with a speed of 19.6m/s. Modelling the stone as a particle moving freely under gravity, find the length of time for which the stone is more than 14.7 m above O


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences