Find the turning point of the curve whose equation is y = (x-3)^2 + 6.

The turning point can be found by using the concept of transformations. Firstly, it is important to form a relation between the values of a and b in an equation of the following form y = (x+a)^2 + b and the turning point of such an equation. Using the understanding of this relationship it becomes easy to deduce the turning point of any curve in this form.
Plotting a curve of y = x^2 shows the turning point to be (0,0). Next, plot the curve of y = (x+1)^2 by inputting values of x to find the corresponding y values. Try this again with y = (x+1)^2 + 1. Note the turning points for all these curves with different values for a and b. While experimenting with values for a and b, it should eventually become clear that for a curve of y = (x+a)^2 + b the turning point lies at (-a,b) and therefore for this equation the turning point is (3,-6).

SV
Answered by Sai V. Maths tutor

4485 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The equation of line L is y = 3x - 2 and the equation of line Q is 3y - 9x + 5 = 0, show these two lines are parallel


Solve this equation: x²-x-6=0


Solve the quadratic equation: 5x2+8x+2


There are 420 balls in a ball pool. There is a combination of violet, blue, yellow and green balls. 2/7 are violet, 35% are blue and the ratio of yellow to green is 4:5. How many of each colour ball is there in the ball pool?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning