Given that y=(sin4x)(sec3x), use the product rule to find dy/dx

First, recall the Product rule: f(x)=g(x)*h(x), f'(x)=h(x)*g'(x)+h'(x)*g(x)This reveals the next step, to find the derivatives of our two subsidiary functions(g and h) d/dx * (sin4x) = 4cos(4x) , and d/dx (sec3x)= 3sec(3x)tan(3x) , this one comes from the list of trigonometric identities Now the answer is simple to find by plugging in the values which we have found to our equation. dy/dx= sec3x4cos4x+3sec(3x)tan(3x)*sin4xThis is the answer as required.

EF
Answered by Edward F. Maths tutor

4231 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle with centre C has equation x^2 + y^2 + 2x + 6y - 40 = 0 . Express this equation in the form (x - a)^2 + (x - b)^2 = r^2. Find the co-ordinates of C and the radius of the circle.


Let R denote the region bounded by the curve y=x^3 and the lines x=0 and x=4. Find the volume generated when R is rotated 360 degrees about the x axis.


Given a fixed parabola and a family of parallel lines with given fixed gradient, find the one line that intersects the parabola in one single point


How do I integrate cos^2x with respect to x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning