Given that the binomial expansion of (1+kx)^n begins 1+8x+16x^2+... a) find k and n b) for what x is this expansion valid?

a) We compare the expansion given to the standard binomial expansion (remembering the powers of k).(1+kx)n=1+n(kx)+(n(n-1)/2)(kx)2+...As this is true for all x (for which the expansion holds), we can compare coefficients. So nk=8 and k2n(n-1)/2=16 (or k2n(n-1)=32).Then we can solve these simultaneous equations by substitution. Rearrange the first equation to obtain k=8/n. Then substitute this into the second equation to obtain (8/n)2n(n-1)=32. Rearrange to obtain 2(n-1)/n=1, and then obtain n=2. Substitute this into k=8/n to get k=4.b) Now we require |kx|<1 for the expansion to hold, and as we now know k=4, we must have |x|<1/4.

GC
Answered by George C. Maths tutor

5360 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find a turning point of a function using differentiation?


Given a curve has the equation f'(x) = 18x^2-24x-6 and passes through the point (3,40), use integration to find f(x) giving each answer in its simplest form.


d/dx ( sin x) ^3


A ball is projected vertically upwards from the ground with speed 21 ms^–1. The ball moves freely under gravity once projected. What is the greatest height reached by the ball?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning