Given that 5cos^2(x) - cos(x) = sin^2(x), find the possible values of cos(x) using a suitable quadratic equation.

First, need to get all the terms in the equation to be the same. Using the following identity, it is possible to achieve this:

sin2(x) + cos2(x) = 1

1 - cos2(x) = sin2(x)

Substituting this into the equation in the question:

5cos2(x) - cos(x) = 1 - cos2(x)

6cos2(x) - cos(x) - 1 = 0

Replace the term cos(x) with y:

6y2 - y - 1 = 0

Product = -6

Sum = -1

There numbers that satisfy this are -3 and 2. Therefore, the factorised form of the eqation is:

(2y - 1)(3y + 1) = 0

The roots of this equation are: y = cos(x) = -1/3 or 1/2. Therefore these are the possible values of cos(x).

AB
Answered by Andrew B. Maths tutor

8028 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The quadratic equation 2x^2 + 6x + 7 = 0 has roots A and B. Write down the value of A + B and the value of AB


The weight in grams, of beans in a tin is normally distributed with mean U and S.D. 7.8, given that 10% conntain more than 225g a) Find U b) % of tins that contain more than 225 grams(A2 stats)


A car is accelerating at 2 ms^-2 along a horizontal road. It passes a point A with a velocity of 10 ms^-1 and later a point B, where AB = 50m. FInd the velocity of the car as it passes through B.


Find a solution to sec^(2)(x)+2tan(x) = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences