Integrate the following with respect to x, f(x)=xsin(x)

f(x)= xsin(x) >>>>>>>>>>>>>>>>>> integral[ udv/dx ] dx= uv - integral[v* du/dx] dx
let x=u and sin(x)=dv/dx >>>>>>>>>>>>>>>>>> du/dx=1 , v= -cos(x)
Plugging in gives formula: integral[ xsin(x)] dx = (x)(-cos(x)) - integral[ -cos(x) ]dx
solving gives ............... = sin(x) - xcos(x) + C

JC
Answered by Jamie C. Maths tutor

3511 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider the infinite series S=Σ(from n=0 to infinite) u(down n) where u(down n)=lim (from n π to (n+1) π) ((sin t)/t) dt. Explain why the series is alternating.


The curve C has equation 4x^2 – y^3 – 4xy + 2^y = 0 The point P with coordinates (–2, 4) lies on C . Find the exact value of dy/dx at the point P .


How do you integrate (x/(x+1)) dx without using substitution.


The circle C has centre (2,1) and radius 10. The point A(10,7) lies on the circle. Find the equation of the tangent to C at A and give it in the form 0 =ay + bx + c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning