Integrate the following with respect to x, f(x)=xsin(x)

f(x)= xsin(x) >>>>>>>>>>>>>>>>>> integral[ udv/dx ] dx= uv - integral[v* du/dx] dx
let x=u and sin(x)=dv/dx >>>>>>>>>>>>>>>>>> du/dx=1 , v= -cos(x)
Plugging in gives formula: integral[ xsin(x)] dx = (x)(-cos(x)) - integral[ -cos(x) ]dx
solving gives ............... = sin(x) - xcos(x) + C

Answered by Maths tutor

3369 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation x^2 + 3px + p = 0, where p is a non-zero constant, has equal roots. Find the value of p.


integrate e^x sin x dx


A particle, P, moves along the x-axis. The displacement, x metres, of P is given by 0.5t^2(t^2 - 2t + 1), when is P instantaneously at rest


Find the constant term in the expression (x^2-1/x)^9


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences