What exactly IS differentiation?

This is a common question as we are often taught to differentiate by simply being told how to do the calculation, but not what it is we're really doing.
The concept
Differentiation is finding the gradient of a line. For simple problems this is easy to see using the normal trignometry methods for finding a gradient: Draw a graph of y = x and you can see that the gradient of the line is 1. Integrate y = x and you find that dy/dx = 1, as you would hope!
However the trignometric methods will not work for a curve such as y = x2 as the gradient is different at every point, so we have to use the differentiation. In this case what the differentiation is really doing is finding the gradient of the line at any given point x. This can be understood through differentiating by first principles.
First Principles
To differentiate y = x2 from first principles we begin by finding the gradient between point (x, x2) and an arbitrary point (x+h, (x+h)2).
This gives us the following equation:

which simplifies to:

Now for the important bit. We found the gradient between x and another point a distance h from x, but we want the gradient at x, so we find the limit of the above equation when h tends to 0. You can see on the graph below how reducing the value of h to 0 will give us the gradient at point x:

In our case of y = x2, this gives us the following answer:

Which gives us exactly what we would get by the differentiation methods we know! You can try this with almost any differential function and you'll find that it works, but don't try anything too complicated just yet, as sometimes it can be tricky to evaluate that limit!

JH
Answered by John H. Maths tutor

7578 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A block of mass 5 kg is being pushed over level ground by rod at 60 degrees to horizontal with force 40 N with acc. 1.5 what is the frictional force of the surface and draw a diagram with the forces acting on the block


What is the area under the graph of (x^2)*sin(x) between 0 and pi


The shortest side of a triangle is 4.3m long. Two of the angles are 45.1 and 51.2 degrees respectively. Find the length of the longest side.


Given that 4 sin(x) + 5 cos(x) = 0 , find the value of tan x .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning