Show that the equation 5sin(x) = 1 + 2 [cos(x)]^2 can be written in the form 2[sin(x)]^2 + 5 sin(x)-3=0

First, we need to realise that we will be using the trigonometric identity sin(x)2 + cos(x)2 = 1
As our goal is to end up with an equation involving only sin, we will therefore substitue cos(x)2 with ( 1 - sin(x)2 ), giving
5sin(x) = 1 + 2(1-sin(x)2)
We then expand the brackets, getting
5sin(x) = 1 + 2 - 2sin(x)2
We want the final equation to equal 0, so we add make 1+2 equal 3 and subtract it from both sides of the equation:
5sin(x) -3 = -2sin(x)2
we then add 2sin(x)2 on both sides, achieving the wanted equation:
2sin(x)2 + 5sin(x) -3 =0

SG
Answered by Santiago G. Maths tutor

17129 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Explain the Chain Rule


A circle C has centre (-5, 12) and passes through the point (0,0) Find the second point where the line y=x intersects the circle.


The equation 2x^2 + 2kx + (k + 2) = 0, where k is a constant, has two distinct real roots. Show that k satisfies k^2 – 2k – 4 > 0


Write 5cos(theta) – 2sin(theta) in the form Rcos(theta + alpha), where R and alpha are constants, R > 0 and 0 <=alpha < 2 π Give the exact value of R and give the value of alpha in radians to 3 decimal places.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning