Find the positive value of x such that log (x) 64 = 2

Find the positive value of x such that logx64 = 2
Using the logarithm rules, we know that we can rearrange the given equation into the form:
x2 = 64
Knowing this, we square root both sides to get 
x = 8, x= -8
As the value of x must be positive, the solution must be 
x = 8

SG
Answered by Santiago G. Maths tutor

18207 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the substitution u=cos(2x)to find ∫(cos(2x))^2 (sin(2x))^3dx


How do I know which is the null hypothesis, and which is the alternative hypothesis?


The equation 2x^2 + 2kx + (k + 2) = 0, where k is a constant, has two distinct real roots. Show that k satisfies k^2 – 2k – 4 > 0


What is dot product and how to calculate it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning