Find the positive value of x such that log (x) 64 = 2

Find the positive value of x such that logx64 = 2
Using the logarithm rules, we know that we can rearrange the given equation into the form:
x2 = 64
Knowing this, we square root both sides to get 
x = 8, x= -8
As the value of x must be positive, the solution must be 
x = 8

SG
Answered by Santiago G. Maths tutor

18696 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

State the interval for which sin x is a decreasing function for 0⁰ ≤ x ≤ 360⁰.


Find the derivative of yx+5y-sin(y) = x


How do you find an angle in a right-angled triangle when you are given two of its side's lengths?


a) Express 4(cosec^2(2x)) - (cosec^2(x)) in terms of sin(x) and cos (x) and hence b) show that 4(cosec^2(2x)) - (cosec^2(x)) = sec^2(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning