Find the positive value of x such that log (x) 64 = 2

Find the positive value of x such that logx64 = 2
Using the logarithm rules, we know that we can rearrange the given equation into the form:
x2 = 64
Knowing this, we square root both sides to get 
x = 8, x= -8
As the value of x must be positive, the solution must be 
x = 8

SG
Answered by Santiago G. Maths tutor

17439 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 5x^3 + 4x^2 + 5x + 9


Use Integration by parts to find ∫ xsin3x dx


A circle has equation x^2 + y^2 - 8x - 10y + 5 = 0, find its centre and radius


Given that x=ln(t) and y=4t^3,a) find an expression for dy/dx, b)and the value of t when d2y/dx2 =0.48. Give your answer to 2 decimal place.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences