Find the equation of the tangent to curve y=5x^2-2x+3 at the point x=0

y=5x2-2x+3 Differentiate to find the equation of the gradient of the curve
dy/dx=10x-2 Substitute x=0 to find the gradient at the point x=0
dy/dx=-2

y=50^2-20+3 Substitute x=0 into the original equation to find y at that point
y=3

y=mx+c Using y=mx+c and substituting x=0, y=3 and m=-2 to find c
3=-2*0+c
c=3 Substitute m=-2 and c=3 to find the equation of the tangent
y=-2x+3

Answered by Maths tutor

5832 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find ∫ x^2(ln(4x))dx


express 9^(3x+1) in the form 3^(ax+b)


How do I find the roots of a quadratic equation?


Core 3: Find all the solutions of 2cos(2x) = 1-2sin(x) in the interval 0<x<360


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning