How can I remember when a turning point of a function is a maximum or a minimum?

The key is to look at the first and second derivatives of that function. Remember that a turning point always has the first derivative equal to zero. Then, the sign of the second derivative indicates if that turning point is either a maximum or a minimum. If the second derivative is negative than remember that the shape of the function resembles a hill (the function is concave) and the highest point can only be a maximum as the function decreases on both sides. If the second derivative is positive, then the graph of the function looks like a cavity (the function is convex) and the turning point is a minimum as its the lowest lying point of that function.

TD
Answered by Titus D. Maths tutor

7797 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A 1kg mass is launched from the ground into the air at an angle of 30 degrees to the horizontal and with initial speed 25 ms^-1. Assuming negligible air resistance, how far from the starting point will the mass travel before it hits the ground?


Find Dy/Dx of (x^2+4x)^3


Evaluate the integral (write on whiteboard, too complicated to write here)


Find the coordinates of the stationary points for the curve y = x^4 - 2*x^2 + 5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning