How can I remember when a turning point of a function is a maximum or a minimum?

The key is to look at the first and second derivatives of that function. Remember that a turning point always has the first derivative equal to zero. Then, the sign of the second derivative indicates if that turning point is either a maximum or a minimum. If the second derivative is negative than remember that the shape of the function resembles a hill (the function is concave) and the highest point can only be a maximum as the function decreases on both sides. If the second derivative is positive, then the graph of the function looks like a cavity (the function is convex) and the turning point is a minimum as its the lowest lying point of that function.

TD
Answered by Titus D. Maths tutor

7724 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = 2xln(x)


How do I integrate 4x*exp(x^2 - 1) with respect to x?


Find the tangent to the curve y=(3/4)x^2 -4x^(1/2) +7 at x=4, expressing it in the form ax+by+c=0.


Is a line ax+by+c=0 tangent to a circle?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning