A circle with centre C has equation x^2+8x+y^2-12y=12. The points P and Q lie on the circle. The origin is the midpoint of the chord PQ. Show that PQ has length nsqrt(3) , where n is an integer.

First complete the square for both x and y. Move all constants to the right hand side. The square root of this is the radius of the circle. The two constants in the completed square bracket show the x and y coordinate of the centre of the circle.
Now, using this information you know that both P and Q are the radius away from the centre. Work out the distance from the centre to the origin point. You now have two sides of a triangle (much easier to show with diagram and how much detail this part would need to be gone into depends on the level of the student). Use Pythagoras to find the distance PO and double this to find distance PQ.

Answered by Maths tutor

7720 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: y-2x-4=0, 4x^2+y^2+20x=0


Having a rectangular parking lot with an area of 5,000 square yards that is to be fenced off on the three sides not adjacent to the highway, what is the least amount of fencing that will be needed to complete the job?


The curve C has equation y = 3x^4 – 8x^3 – 3 Find (i) dy/dx (ii) the co-ordinates of the stationary point(s)


Differentiate the following: y=(7x^2+2)sinx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences