Differentiate y = x(x+3)^4

 To differentiate this function we use the product rule. In the product rule we, leave the first alone, differentiate the second, and leave the second alone, differentiate the first.                                                                                                                  Say y = U * V (U and V are both functions of x)                                                                                                                      Then in general we have y' = U dV/dx + V dU/dx For this example we have; y' = x * d/dx (x+3)4 +  (x+3)4 d/dx x                      y' = x * 4 * (x+3)3 * 1 +  (x+3)4  * 1                                                                                                                                        When differentiating bracketed term we start differentiating outside the brackets and work our way in, therefore initially treating the brackets like a single term then accounting for the terms inside the brackets. To simplify the final expression we now take out the common factor.                                                                                                                                                       y' =  (x+3)3 [4x + (x+3)]                                                                                                                                                         Therefore, y' = (x+3)3 (5x+3)

HH
Answered by Harry H. Maths tutor

4017 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the minimum value of the function, f(x)= x^2 + 5x + 2, where x belongs to the set of Real numbers


At time t = 0 a particle leaves the origin and moves along the x-axis. At time t seconds, the velocity of P is v m/s in the positive x direction, where v=4t^2–13t+2. How far does it travel between the times t1 and t2 at which it is at rest?


How to differentiate using the Product Rule


The curve C has the equation y=3x/(9+x^2 ) (a) Find the turning points of the curve C (b) Using the fact that (d^2 y)/(dx^2 )=(6x(x^2-27))/(x^2+9)^3 or otherwise, classify the nature of each turning point of C


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning