The perimeter of a right-angled triangle is 72 cm. The lengths of its sides are in the ratio 3 : 4 : 5 Work out the area of the triangle

Perimeter= 72Ratios are 3:4:5In total, you can think of there being 3+4+5=12 "portions".This means that in the perimeter includes 12 portions. 72/12=6 so each portion is worth 6cm.
Now we can work out the length of each side.3:4:5 scaled up by 6 (recall that each portion is worth 6cm) yields sides of lengths 18cm, 24cm and 30 cm.
Note that the question says that it is a right angled triangle, therefore, we can use the formula for the area of a right angled triangle (1/2 x a x b).
Does it matter what you set a and b as? Yes, because neither a nor b are the hypotenuse. In our triangle, the hypotenuse will be 30cm (the longest length) so our a and b must be 18 and 24.
1/2 x 18 x 24 = 216cm^2

NA
Answered by Natasha A. Maths tutor

2539 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to do Difficult Surd Algebraic manipulation questions example: Rationalise the denominator of the expression: 1+5^(1/2) / 3+5^(1/2). Give your answer in its simplest form:


How can you solve an equation with unknowns in the denominators?


Find the gradient of the line on which the points (1,3) and (3,4) lie and find the y-coordinate of the line at x = 7.


Expand and simplify the following expression: (2x-1)(3x+2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences