Question: Factorise the expressions: 1. X^2 - 9 2. 2X^2 - 14X + 24

The ways to complete the first one is to realise that it involves a difference of two squares. If you were to see (X^2) with a constant (number), you know they have no factor in common, meaning the two terms (X^2) and (9) have nothing the same. After this realisation you should expand and factorise the expression by realising that (-9) can be made from (-3) and (+3). This leads to the answer ((X+3)(X-3)). The question can be reverse engineered from the answer.For this you should notice that all the terms have a factor in common, in this case it is (2) so pull it out of the expression (2(X^2 - 7X + 12)). After this, the expression is much simpler, all that is required is to find two numbers that add to make (-7) and multiply to make (12). In this case the numbers are (-3) and (-4) leading to (2(X^2 - 4X - 3X + 12)). Writing down this step may be confusing so it can often be skipped. The final step is to factorise, the answer is (2(X - 4)(X - 3)).

YM
Answered by Yahya M. Maths tutor

3379 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you calculate a^5 x a^16 / a^4?


Describe and explain the change in the shape of the graph y=x^2 and y=x^2 + 2.


In a group of 40 people, 16 owned at least a phone, 7 owned only a tablet and it's known 13 owned both. What's the probability that a person, picked at random, owned neither?


What is the solution to the system of equations defined by (1) x+2y = 4 and (2) y+2x = 6?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning