What is the equation of the straight line passing through the points (2,3) and (3,5)?

There are three steps to solving these types of straight line problems. 1) Find the gradient (slope) of the line. 2) Find the point slope formula. 3) Solve for y.1) The gradient (m) of the line between any two points (x1, y1) and (x2, y2) is given by m = (y2-y1)/(x2-x1). It does not matter which order we label the points in. In this case, we have m = (5-3)/(3-1) = 2/1 = 2. The gradient of the line is 2.2) The point slope formula is given by y - y1 = m(x - x1). Using (2,3) as (x1, y1) and m = 2 from part 1), we have y - 3 = 2(x - 2)3) Expanding the brackets on the right-hand side gives y - 3 = 2x - 4. Adding 3 to both sides of the equation gives y = 2x - 1. Therefore, the equation of the straight line is given by y = 2x - 1.

OM
Answered by Omar M. Maths tutor

5896 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The perimeter of a right angled triangle is 72cm. The length of its sides are in the ratio 3:4:5. Work out the area of the triangle.


A stationary ball starts rolling down a hill, and after 5s it reaches a speed of 12m/s. From here the ground levels off, and the ball continues at this speed for 3 more seconds. Plot this on a velocity-time diagram.


n is an integer such that 3n+2<14 and 6n > n2 +5. Find all the values of n.


How do you use the completing the square method to solve a quadratic equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning