f(x) = sinx. Using differentiation from first principles find the exact value of f' (π/6).

The derivative of the function where x=π/6 is defined asThe limit as h->0 of [sin(h+π/6)-sin(π/6)]/hUsing the double angle formula, sin(h+π/6) = sin(h)cos(π/6) + cos(h)sin(π/6) = √3sin(h)/2 + cos(h)sin(π/6)The limit becomes [sin(h)/2 + cos(h)sin(π/6)-sin(π/6)]/hThe limit can be broken up into two partslim as h->0 of [cos(h)sin(π/6)-sin(π/6)]/h = 0 (could use l'Hospital's rule or half angle formula)lim as h->0 of [√3sin(h)/2]/h = 1/2 (small angle approximation)0+√3/2=√3/2

Answered by Maths tutor

7443 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the value of the discriminant of x2 + 6x + 11


What is the integral of (6x^2 + 2/x^2 + 5) with respect to x?


Find the equation of the line tangential to the function f(x) = x^2+ 1/ (x+3) + 1/(x^4) at x =2


Solve the simultaneous equations x – 2y = 1 and x^2 + y^2 = 29.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning