f(x) = sinx. Using differentiation from first principles find the exact value of f' (π/6).

The derivative of the function where x=π/6 is defined asThe limit as h->0 of [sin(h+π/6)-sin(π/6)]/hUsing the double angle formula, sin(h+π/6) = sin(h)cos(π/6) + cos(h)sin(π/6) = √3sin(h)/2 + cos(h)sin(π/6)The limit becomes [sin(h)/2 + cos(h)sin(π/6)-sin(π/6)]/hThe limit can be broken up into two partslim as h->0 of [cos(h)sin(π/6)-sin(π/6)]/h = 0 (could use l'Hospital's rule or half angle formula)lim as h->0 of [√3sin(h)/2]/h = 1/2 (small angle approximation)0+√3/2=√3/2

Answered by Maths tutor

7064 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given a fixed parabola and a family of parallel lines with given fixed gradient, find the one line that intersects the parabola in one single point


Integrate the function x(2x+5)^0.5


The Curve, C, has equation: x^2 - 3xy - 4y^2 +64 =0 Find dy/dx in terms of x and y. [Taken from Edexcel C4 2015 Q6a]


Integration of ln(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences