A curve has the equation y = x^4 - 8x^2 + 60x + 7. What is the gradient of the curve when x = 6?

To find the gradient of any curve, we take the derivative. So in this case, we need to take dy/dx. We do this by multiplying the term by the power on x, and then lowering the power by one. For example, for the first term, x4, the power is four, so we multiply x4 by four, and the power becomes three, so we have 4x3. We repeat this for all of the terms individually to get dy/dx = 4x-16x +60. That gives us the gradient at any point. To get the gradient at x = 6 we need to substitute the value in to the new equation, so we get dy/dx = 4 * 63 - 16 * 6 + 60 = 828

EH
Answered by Elizabeth H. Maths tutor

5035 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate ((x^3)*lnx)dx


two balls of similar size masses m and 2m are moving at speeds u and 2u along a frictionless plane, they collide head on and are reflected, assuming that the coefficient of restitution of this collision is 1, what the speeds are afterwards in u


Find the binomial expansion of (4-8x)^(-3/2) in ascending powers of x, up to and including the term in x^3. Give each coefficient as a fraction in its simplest form. For what range of x is a binomial expansion valid?


Find the nature of the turning points of the graph given by the equation x^4 +(8/3)*x^3 -2x^2 -8x +177 (6 marks)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences