Show algebraically that (4n-3)^2 - (2n+5)^2 is always a multiple of n-4

First we expand the brackets by squaring each side(4n-3)2 = (4n-3)(4n-3)= 16n2 - 24n + 9(2n+5)2 = (2n+5)(2n+5)= 4n2 + 20n + 25Remember the expression is (4n-3)2 - (2n+5)2 so we subtract the expanded second expression from the first16n2 - 24n + 9 - (4n2 + 20n + 25)= 16n2 - 24n + 9 - 4n2 -20n - 25= 12n2 - 44n - 4To simplify we can factorise by 44 (3n2 - 11n - 1)Then if we factorise the quadratic in the brackets we get4 (3n + 1)(n - 4)As the expression contains (n - 4), this means that (4n-3)2 - (2n+5)2 is always a multiple of (n - 4)

EB
Answered by Ella B. Maths tutor

3420 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove that 1/sin(2theta) - cos(2theta)/sin(2theta) = tan(theta)


What is the best way to solve simultaneous equations?


Solve the equation x2-7x=-10


Find the Maximum Point of this curve - -X^2 -7X -20


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning