Prove that the indefinite integral of I = int(exp(x).cos(x))dx is (1/2)exp(x).sin(x) + (1/2)exp(x).cos(x) + C

Starting with the initial integral of int(exp(x).cos(x))dx we can see that this is going to have to be integrated by parts. This states that the integral of (u . dv/dx)dx is equal to u.v - int(v . du/dx)dx

Therefore, by applying this equation we can determine that u=exp(x), dv=sin(x), du=exp(x), v=-cox(x), as integrating sin(x) will give us -cos(x)

This gives us int(I) = exp(x).sin(x) - int(exp(x).sin(x))dx

As can be seen, this changes the form of the equation but it hasnt become any simpler. At this point we integrate once more by parts.

By looking at the 'int(exp(x).sin(x))dx' which we obtained, this can be integrated again.

int(exp(x).sin(x))dx = -exp(x).cos(x) + int(exp(x).cos(x))dx

Substituting this into the first integral we worked out will give us:

I = exp(x).sin(x) + exp(x).cos(x) - int(exp(x).cos(x))

It may seem that we have once again achieved nothing, but by inspecting the equation closely, we can see that we have ended up with the initial integral we were presented with on the RHS of the equation. By moving this negative integral to the other side we can see that we are going to have 2I. Dividing the whole equation by 2 will give us I = (exp(x).sin(x) + exp(x).cos(x))/2 + C (dont forget the constant!).

Hence we have obtained an answer to this cyclic integral.

SA
Answered by Sammy A. Maths tutor

5558 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that (2x + 11 )/(2x + 1)(x + 3) ≡ A /(2x + 1) + B /(x + 3) , find the values of the constants A and B. Hence show that the integral from 0 to 2 (2x + 11)/ (2x + 1)(x + 3) dx = ln 15.


Find the values of x, where 0 < x < 360, such that x solves the equation: 8(tan[x])^2 – 5(sec[x])^2 = 7 + 4sec[x]


If I throw a ball vertically upwards with a velocity of 15 m/s and we assume the gravitational acceleration is 10 m/s^2. Draw the distance-time, and velocity-time graphs, how long is the ball in the air before it returns to the point I threw it from?


a) Integrate ln(x) + 1/x - x to find the equation for Curve A b) find the x coordinate on Curve A when y = 0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences